COURSE PROFILE

Course Name	Code	Semester	Term	Theory +PS+Lab. (hour/week)	Local Credits
Differential Equations	MATH 220	Spring	4	$3+2+0$	4

Prerequisites	Math 101

Course Language	English
Course Type	Required
Course Lecturer	Prof. Dr. Serdal Pamuk
Course Assistant	Filiz Uçgun
Course Objectives	This course aims to teach fundamental tools of differential equations used to solve problems from linear and nonlinear mathematics and physics, including mathematical modelling.
Course Learning Outcomes	The students who succeeded in this course should be able to: - provide an understanding the concept of ODEs, - select the appropriate method to solve differential equations with constant coefficients, - understand the behavior of the solutions of differential equations with discontinuous non-homogeneous parts, use Laplace transforms to solve that kind of equations , - use power series to solve ODEs, - find the solutions of systems of first order linear equations .
Course Content	Basic definitions, first order differential equations, second order linear differential equations with constant coefficients. Systems of first order linear differential equations with constant coefficients, Laplace transforms and its applications to linear differential systems.Linear differential equations with variable coefficients, series solutions of second-order linear differential equations.

COURSE CONTENT

Week	Subjects	Related Preparation
$\mathbf{1}$	Introduction. First order differential equations. Linear equations; Method of integrating factors, separable equations, exact equations.	Chapter 1.1,1.3 Chapter 2.1,2.2,2.6
$\mathbf{2}$	Existence and uniqueness Second Order Linear Equations: Homogeneous equations with constant	Chapter 2.8 Chapter 3.1,3.2

	coefficients. Fundamental solutions of linear homogeneous equations.	
$\mathbf{3}$	Linear Independence, Wronskian. Complex roots, repeated roots; Reduction of order.	Chapter 3.3, 3.4, 3.5
$\mathbf{4}$	Nonhomogeneous Equations; Method of undetermined Coefficients. Variation of parameters.	Chapter 3.6,. 3.7
$\mathbf{5}$	Higher order Linear equations: General theory, Homogeneous Equations with constant coefficients.	Chapter 4.1, 4.2
$\mathbf{6}$	Higher order Linear equations Method of undetermined coefficients. Variation of parameters.	Chapter 4.3, 4.4
$\mathbf{7}$	The Laplace Transform: Definitions. Initial value problems. Step functions.	Chapter 6.1, 6.2, 6.3, $6.4,6.5$
$\mathbf{8}$	Differential equations with discontinuous forcing functions. Impulse functions	Chapter 6.4, 6.5
$\mathbf{9}$	The convolution integrals. Systems of First Order Linear Equations: Review of matrices.	Chapter 6.6 Chapter 7.1, 7.2
$\mathbf{1 0}$	Linear independence, eigenvalues, eigenvectors. Basic Theory. Homogeneous linear systems with constant coefficients. Real eingenvalues.	Chapter 7.3, 7.4, 7.5
$\mathbf{1 1}$	Complex eigenvalues. Fundamental matrices. Repeated eingenvalues. Nonhomogeneous Linear Systems.	Chapter 7.6, 7.7, 7.8, 7.9
$\mathbf{1 2}$	Series Solutions: Power series. Series Solutions near an ordinary point. Part I	Chapter 5.1, 5.2
$\mathbf{1 3}$	Series Solutions near an ordinary point. Part II Regular singular points.	Chapter 5.3
$\mathbf{1 4}$	Euler equation. Series solutions near a regular singular point, Part I.	Chapter 5.4, 5.5

Course Textbooks	William E. BOYCE \& Richard C. DIPRIMA, Elementary Differential Equations and Boundary Value Problems, 9
Recommended edition, 2009, John Wiley \& Sons, Inc.	
References	All "Elementary Differential Equation" books.

Semester Requirements	Number	Percentage of Grade
Attendance/Participation	1	10
Laboratory	-	-
Application	-	-
Special Course Internship (Work	-	-
Placement)		

Quizzes/Studio Critics	3	5
Homework Assignments	5	-
Presentation	-	-
Project	-	-
Seminar/Workshop	-	-
Midterms/Oral Exams	1	35
Final/Resit Exam	1	50
Total	11	100

PERCENTAGE OF SEMESTER WORK	10	50
PERCENTAGE OF FINAL WORK	1	50
Total	11	100

Course Category	Core Courses	x
	Major Area Courses	
	Supportive Courses	
	Media and Managment Skills Courses	
	Transferable Skill Courses	

COURSE'S CONTRIBUTION TO PROGRAM

\#	Program Qualifications / Outcomes	* Level of Contribution				
		1	2	3	4	5
1	To have a grasp of basic mathematics, applied mathematics and theories and applications of statistics.					X
2	To be able to use theoretical and applied knowledge acquired in the advanced fields of mathematics and statistics,					X
3	To be able to define and analyze problems and to find solutions based on scientific methods,					X
4	To be able to apply mathematics and statistics in real life with interdisciplinary approach and to discover their potentials,				X	
5	To be able to acquire necessary information and to make modeling in any field that				X	

[^0]ECTS ALLOCATED BASED ON STUDENT WORKLOAD BY THE COURSE DESCRIPTION

Activities	Number	Duration (Hours)	Total Workload
Course Hours (Including Exams)	14	3	42
Tutorials	14	2	28

Laboratory	-	-	-
Application	-	-	-
Special Course Internship (Work Placement)	-	-	-
Field Work	-	-	-
Study Hours Out of Class	14	2	28
Presentations / Seminar	-	-	-
Project	-	-	-
Preparatory reading	13	1	13
Homework Assignments	5	2	10
Quizzes	3	7	21
Midterm Exams	1	15	15
Final / Resit Exam	1	18	18
		Total Workload	175

COURSE CATEGORY

| ISCED
 GENERAL
 AREA
 CODES | GENERAL AREAS | ISCED
 BASİC
 AREA
 CODES | BASIC EDUCATIONAL AREAS |
| :--- | :--- | :--- | :--- | :--- |

4	Science	48	Computer	0
5	Engineering, Manufacturing and Civil	52	Engineering	0
5	Engineering, Manufacturing and Civil	54	Manufacturing and Processing	0
5	Engineering, Manufacturing and Civil	58	Architecture and Structure	0
6	Agriculture	62	Agriculture, Forestry, Livestock, Fishery	0
7	Medicine and Welfare	Medicine and Welfare	72	Medical
7	Service	Sorinary	0	
8	Service	Service	Personal Services	0
8	Service	Transport Services	0	
8	85	Environment Protection	0	
8	86	Security Services	0	

[^0]: *1 Lowest, 2 Low, 3 Average, 4 High, 5 Highest

